tommath.hGo to the documentation of this file.00001 /* LibTomMath, multiple-precision integer library -- Tom St Denis 00002 * 00003 * LibTomMath is a library that provides multiple-precision 00004 * integer arithmetic as well as number theoretic functionality. 00005 * 00006 * The library was designed directly after the MPI library by 00007 * Michael Fromberger but has been written from scratch with 00008 * additional optimizations in place. 00009 * 00010 * The library is free for all purposes without any express 00011 * guarantee it works. 00012 * 00013 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com 00014 */ 00015 #ifndef BN_H_ 00016 #define BN_H_ 00017 00018 #include <stdio.h> 00019 #include <string.h> 00020 #include <stdlib.h> 00021 #include <ctype.h> 00022 #include <limits.h> 00023 00024 #include <tommath_class.h> 00025 00026 #ifndef MIN 00027 #define MIN(x,y) ((x)<(y)?(x):(y)) 00028 #endif 00029 00030 #ifndef MAX 00031 #define MAX(x,y) ((x)>(y)?(x):(y)) 00032 #endif 00033 00034 #ifdef __cplusplus 00035 extern "C" { 00036 00037 /* C++ compilers don't like assigning void * to mp_digit * */ 00038 #define OPT_CAST(x) (x *) 00039 00040 #else 00041 00042 /* C on the other hand doesn't care */ 00043 #define OPT_CAST(x) 00044 00045 #endif 00046 00047 00048 /* detect 64-bit mode if possible */ 00049 #if defined(__x86_64__) 00050 #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) 00051 #define MP_64BIT 00052 #endif 00053 #endif 00054 00055 /* some default configurations. 00056 * 00057 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits 00058 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits 00059 * 00060 * At the very least a mp_digit must be able to hold 7 bits 00061 * [any size beyond that is ok provided it doesn't overflow the data type] 00062 */ 00063 #ifdef MP_8BIT 00064 typedef unsigned char mp_digit; 00065 typedef unsigned short mp_word; 00066 #elif defined(MP_16BIT) 00067 typedef unsigned short mp_digit; 00068 typedef unsigned long mp_word; 00069 #elif defined(MP_64BIT) 00070 /* for GCC only on supported platforms */ 00071 #ifndef CRYPT 00072 typedef unsigned long long ulong64; 00073 typedef signed long long long64; 00074 #endif 00075 00076 typedef unsigned long mp_digit; 00077 typedef unsigned long mp_word __attribute__ ((mode(TI))); 00078 00079 #define DIGIT_BIT 60 00080 #else 00081 /* this is the default case, 28-bit digits */ 00082 00083 /* this is to make porting into LibTomCrypt easier :-) */ 00084 #ifndef CRYPT 00085 #if defined(_MSC_VER) || defined(__BORLANDC__) 00086 typedef unsigned __int64 ulong64; 00087 typedef signed __int64 long64; 00088 #else 00089 typedef unsigned long long ulong64; 00090 typedef signed long long long64; 00091 #endif 00092 #endif 00093 00094 typedef unsigned long mp_digit; 00095 typedef ulong64 mp_word; 00096 00097 #ifdef MP_31BIT 00098 /* this is an extension that uses 31-bit digits */ 00099 #define DIGIT_BIT 31 00100 #else 00101 /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ 00102 #define DIGIT_BIT 28 00103 #define MP_28BIT 00104 #endif 00105 #endif 00106 00107 /* define heap macros */ 00108 #ifndef CRYPT 00109 /* default to libc stuff */ 00110 #ifndef XMALLOC 00111 #define XMALLOC malloc 00112 #define XFREE free 00113 #define XREALLOC realloc 00114 #define XCALLOC calloc 00115 #else 00116 /* prototypes for our heap functions */ 00117 extern void *XMALLOC(size_t n); 00118 extern void *XREALLOC(void *p, size_t n); 00119 extern void *XCALLOC(size_t n, size_t s); 00120 extern void XFREE(void *p); 00121 #endif 00122 #endif 00123 00124 00125 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ 00126 #ifndef DIGIT_BIT 00127 #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ 00128 #endif 00129 00130 #define MP_DIGIT_BIT DIGIT_BIT 00131 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) 00132 #define MP_DIGIT_MAX MP_MASK 00133 00134 /* equalities */ 00135 #define MP_LT -1 /* less than */ 00136 #define MP_EQ 0 /* equal to */ 00137 #define MP_GT 1 /* greater than */ 00138 00139 #define MP_ZPOS 0 /* positive integer */ 00140 #define MP_NEG 1 /* negative */ 00141 00142 #define MP_OKAY 0 /* ok result */ 00143 #define MP_MEM -2 /* out of mem */ 00144 #define MP_VAL -3 /* invalid input */ 00145 #define MP_RANGE MP_VAL 00146 00147 #define MP_YES 1 /* yes response */ 00148 #define MP_NO 0 /* no response */ 00149 00150 /* Primality generation flags */ 00151 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ 00152 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ 00153 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ 00154 00155 typedef int mp_err; 00156 00157 /* you'll have to tune these... */ 00158 extern int KARATSUBA_MUL_CUTOFF, 00159 KARATSUBA_SQR_CUTOFF, 00160 TOOM_MUL_CUTOFF, 00161 TOOM_SQR_CUTOFF; 00162 00163 /* define this to use lower memory usage routines (exptmods mostly) */ 00164 /* #define MP_LOW_MEM */ 00165 00166 /* default precision */ 00167 #ifndef MP_PREC 00168 #ifndef MP_LOW_MEM 00169 #define MP_PREC 32 /* default digits of precision */ 00170 #else 00171 #define MP_PREC 8 /* default digits of precision */ 00172 #endif 00173 #endif 00174 00175 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ 00176 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) 00177 00178 /* the infamous mp_int structure */ 00179 typedef struct { 00180 int used, alloc, sign; 00181 mp_digit *dp; 00182 } mp_int; 00183 00184 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ 00185 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); 00186 00187 00188 #define USED(m) ((m)->used) 00189 #define DIGIT(m,k) ((m)->dp[(k)]) 00190 #define SIGN(m) ((m)->sign) 00191 00192 /* error code to char* string */ 00193 char *mp_error_to_string(int code); 00194 00195 /* ---> init and deinit bignum functions <--- */ 00196 /* init a bignum */ 00197 int mp_init(mp_int *a); 00198 00199 /* free a bignum */ 00200 void mp_clear(mp_int *a); 00201 00202 /* init a null terminated series of arguments */ 00203 int mp_init_multi(mp_int *mp, ...); 00204 00205 /* clear a null terminated series of arguments */ 00206 void mp_clear_multi(mp_int *mp, ...); 00207 00208 /* exchange two ints */ 00209 void mp_exch(mp_int *a, mp_int *b); 00210 00211 /* shrink ram required for a bignum */ 00212 int mp_shrink(mp_int *a); 00213 00214 /* grow an int to a given size */ 00215 int mp_grow(mp_int *a, int size); 00216 00217 /* init to a given number of digits */ 00218 int mp_init_size(mp_int *a, int size); 00219 00220 /* ---> Basic Manipulations <--- */ 00221 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) 00222 #define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) 00223 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) 00224 00225 /* set to zero */ 00226 void mp_zero(mp_int *a); 00227 00228 /* set to a digit */ 00229 void mp_set(mp_int *a, mp_digit b); 00230 00231 /* set a 32-bit const */ 00232 int mp_set_int(mp_int *a, unsigned long b); 00233 00234 /* get a 32-bit value */ 00235 unsigned long mp_get_int(mp_int * a); 00236 00237 /* initialize and set a digit */ 00238 int mp_init_set (mp_int * a, mp_digit b); 00239 00240 /* initialize and set 32-bit value */ 00241 int mp_init_set_int (mp_int * a, unsigned long b); 00242 00243 /* copy, b = a */ 00244 int mp_copy(mp_int *a, mp_int *b); 00245 00246 /* inits and copies, a = b */ 00247 int mp_init_copy(mp_int *a, mp_int *b); 00248 00249 /* trim unused digits */ 00250 void mp_clamp(mp_int *a); 00251 00252 /* ---> digit manipulation <--- */ 00253 00254 /* right shift by "b" digits */ 00255 void mp_rshd(mp_int *a, int b); 00256 00257 /* left shift by "b" digits */ 00258 int mp_lshd(mp_int *a, int b); 00259 00260 /* c = a / 2**b */ 00261 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); 00262 00263 /* b = a/2 */ 00264 int mp_div_2(mp_int *a, mp_int *b); 00265 00266 /* c = a * 2**b */ 00267 int mp_mul_2d(mp_int *a, int b, mp_int *c); 00268 00269 /* b = a*2 */ 00270 int mp_mul_2(mp_int *a, mp_int *b); 00271 00272 /* c = a mod 2**d */ 00273 int mp_mod_2d(mp_int *a, int b, mp_int *c); 00274 00275 /* computes a = 2**b */ 00276 int mp_2expt(mp_int *a, int b); 00277 00278 /* Counts the number of lsbs which are zero before the first zero bit */ 00279 int mp_cnt_lsb(mp_int *a); 00280 00281 /* I Love Earth! */ 00282 00283 /* makes a pseudo-random int of a given size */ 00284 int mp_rand(mp_int *a, int digits); 00285 00286 /* ---> binary operations <--- */ 00287 /* c = a XOR b */ 00288 int mp_xor(mp_int *a, mp_int *b, mp_int *c); 00289 00290 /* c = a OR b */ 00291 int mp_or(mp_int *a, mp_int *b, mp_int *c); 00292 00293 /* c = a AND b */ 00294 int mp_and(mp_int *a, mp_int *b, mp_int *c); 00295 00296 /* ---> Basic arithmetic <--- */ 00297 00298 /* b = -a */ 00299 int mp_neg(mp_int *a, mp_int *b); 00300 00301 /* b = |a| */ 00302 int mp_abs(mp_int *a, mp_int *b); 00303 00304 /* compare a to b */ 00305 int mp_cmp(mp_int *a, mp_int *b); 00306 00307 /* compare |a| to |b| */ 00308 int mp_cmp_mag(mp_int *a, mp_int *b); 00309 00310 /* c = a + b */ 00311 int mp_add(mp_int *a, mp_int *b, mp_int *c); 00312 00313 /* c = a - b */ 00314 int mp_sub(mp_int *a, mp_int *b, mp_int *c); 00315 00316 /* c = a * b */ 00317 int mp_mul(mp_int *a, mp_int *b, mp_int *c); 00318 00319 /* b = a*a */ 00320 int mp_sqr(mp_int *a, mp_int *b); 00321 00322 /* a/b => cb + d == a */ 00323 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); 00324 00325 /* c = a mod b, 0 <= c < b */ 00326 int mp_mod(mp_int *a, mp_int *b, mp_int *c); 00327 00328 /* ---> single digit functions <--- */ 00329 00330 /* compare against a single digit */ 00331 int mp_cmp_d(mp_int *a, mp_digit b); 00332 00333 /* c = a + b */ 00334 int mp_add_d(mp_int *a, mp_digit b, mp_int *c); 00335 00336 /* c = a - b */ 00337 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); 00338 00339 /* c = a * b */ 00340 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); 00341 00342 /* a/b => cb + d == a */ 00343 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); 00344 00345 /* a/3 => 3c + d == a */ 00346 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); 00347 00348 /* c = a**b */ 00349 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); 00350 00351 /* c = a mod b, 0 <= c < b */ 00352 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); 00353 00354 /* ---> number theory <--- */ 00355 00356 /* d = a + b (mod c) */ 00357 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); 00358 00359 /* d = a - b (mod c) */ 00360 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); 00361 00362 /* d = a * b (mod c) */ 00363 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); 00364 00365 /* c = a * a (mod b) */ 00366 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); 00367 00368 /* c = 1/a (mod b) */ 00369 int mp_invmod(mp_int *a, mp_int *b, mp_int *c); 00370 00371 /* c = (a, b) */ 00372 int mp_gcd(mp_int *a, mp_int *b, mp_int *c); 00373 00374 /* produces value such that U1*a + U2*b = U3 */ 00375 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); 00376 00377 /* c = [a, b] or (a*b)/(a, b) */ 00378 int mp_lcm(mp_int *a, mp_int *b, mp_int *c); 00379 00380 /* finds one of the b'th root of a, such that |c|**b <= |a| 00381 * 00382 * returns error if a < 0 and b is even 00383 */ 00384 int mp_n_root(mp_int *a, mp_digit b, mp_int *c); 00385 00386 /* special sqrt algo */ 00387 int mp_sqrt(mp_int *arg, mp_int *ret); 00388 00389 /* is number a square? */ 00390 int mp_is_square(mp_int *arg, int *ret); 00391 00392 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ 00393 int mp_jacobi(mp_int *a, mp_int *n, int *c); 00394 00395 /* used to setup the Barrett reduction for a given modulus b */ 00396 int mp_reduce_setup(mp_int *a, mp_int *b); 00397 00398 /* Barrett Reduction, computes a (mod b) with a precomputed value c 00399 * 00400 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely 00401 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. 00402 */ 00403 int mp_reduce(mp_int *a, mp_int *b, mp_int *c); 00404 00405 /* setups the montgomery reduction */ 00406 int mp_montgomery_setup(mp_int *a, mp_digit *mp); 00407 00408 /* computes a = B**n mod b without division or multiplication useful for 00409 * normalizing numbers in a Montgomery system. 00410 */ 00411 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); 00412 00413 /* computes x/R == x (mod N) via Montgomery Reduction */ 00414 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); 00415 00416 /* returns 1 if a is a valid DR modulus */ 00417 int mp_dr_is_modulus(mp_int *a); 00418 00419 /* sets the value of "d" required for mp_dr_reduce */ 00420 void mp_dr_setup(mp_int *a, mp_digit *d); 00421 00422 /* reduces a modulo b using the Diminished Radix method */ 00423 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); 00424 00425 /* returns true if a can be reduced with mp_reduce_2k */ 00426 int mp_reduce_is_2k(mp_int *a); 00427 00428 /* determines k value for 2k reduction */ 00429 int mp_reduce_2k_setup(mp_int *a, mp_digit *d); 00430 00431 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ 00432 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); 00433 00434 /* returns true if a can be reduced with mp_reduce_2k_l */ 00435 int mp_reduce_is_2k_l(mp_int *a); 00436 00437 /* determines k value for 2k reduction */ 00438 int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); 00439 00440 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ 00441 int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); 00442 00443 /* d = a**b (mod c) */ 00444 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); 00445 00446 /* ---> Primes <--- */ 00447 00448 /* number of primes */ 00449 #ifdef MP_8BIT 00450 #define PRIME_SIZE 31 00451 #else 00452 #define PRIME_SIZE 256 00453 #endif 00454 00455 /* table of first PRIME_SIZE primes */ 00456 extern const mp_digit ltm_prime_tab[]; 00457 00458 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ 00459 int mp_prime_is_divisible(mp_int *a, int *result); 00460 00461 /* performs one Fermat test of "a" using base "b". 00462 * Sets result to 0 if composite or 1 if probable prime 00463 */ 00464 int mp_prime_fermat(mp_int *a, mp_int *b, int *result); 00465 00466 /* performs one Miller-Rabin test of "a" using base "b". 00467 * Sets result to 0 if composite or 1 if probable prime 00468 */ 00469 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); 00470 00471 /* This gives [for a given bit size] the number of trials required 00472 * such that Miller-Rabin gives a prob of failure lower than 2^-96 00473 */ 00474 int mp_prime_rabin_miller_trials(int size); 00475 00476 /* performs t rounds of Miller-Rabin on "a" using the first 00477 * t prime bases. Also performs an initial sieve of trial 00478 * division. Determines if "a" is prime with probability 00479 * of error no more than (1/4)**t. 00480 * 00481 * Sets result to 1 if probably prime, 0 otherwise 00482 */ 00483 int mp_prime_is_prime(mp_int *a, int t, int *result); 00484 00485 /* finds the next prime after the number "a" using "t" trials 00486 * of Miller-Rabin. 00487 * 00488 * bbs_style = 1 means the prime must be congruent to 3 mod 4 00489 */ 00490 int mp_prime_next_prime(mp_int *a, int t, int bbs_style); 00491 00492 /* makes a truly random prime of a given size (bytes), 00493 * call with bbs = 1 if you want it to be congruent to 3 mod 4 00494 * 00495 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can 00496 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself 00497 * so it can be NULL 00498 * 00499 * The prime generated will be larger than 2^(8*size). 00500 */ 00501 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) 00502 00503 /* makes a truly random prime of a given size (bits), 00504 * 00505 * Flags are as follows: 00506 * 00507 * LTM_PRIME_BBS - make prime congruent to 3 mod 4 00508 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) 00509 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero 00510 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one 00511 * 00512 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can 00513 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself 00514 * so it can be NULL 00515 * 00516 */ 00517 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); 00518 00519 /* ---> radix conversion <--- */ 00520 int mp_count_bits(mp_int *a); 00521 00522 int mp_unsigned_bin_size(mp_int *a); 00523 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); 00524 int mp_to_unsigned_bin(mp_int *a, unsigned char *b); 00525 int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); 00526 00527 int mp_signed_bin_size(mp_int *a); 00528 int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); 00529 int mp_to_signed_bin(mp_int *a, unsigned char *b); 00530 int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); 00531 00532 int mp_read_radix(mp_int *a, const char *str, int radix); 00533 int mp_toradix(mp_int *a, char *str, int radix); 00534 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); 00535 int mp_radix_size(mp_int *a, int radix, int *size); 00536 00537 int mp_fread(mp_int *a, int radix, FILE *stream); 00538 int mp_fwrite(mp_int *a, int radix, FILE *stream); 00539 00540 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) 00541 #define mp_raw_size(mp) mp_signed_bin_size(mp) 00542 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) 00543 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) 00544 #define mp_mag_size(mp) mp_unsigned_bin_size(mp) 00545 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) 00546 00547 #define mp_tobinary(M, S) mp_toradix((M), (S), 2) 00548 #define mp_tooctal(M, S) mp_toradix((M), (S), 8) 00549 #define mp_todecimal(M, S) mp_toradix((M), (S), 10) 00550 #define mp_tohex(M, S) mp_toradix((M), (S), 16) 00551 00552 /* lowlevel functions, do not call! */ 00553 int s_mp_add(mp_int *a, mp_int *b, mp_int *c); 00554 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); 00555 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) 00556 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); 00557 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); 00558 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); 00559 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); 00560 int fast_s_mp_sqr(mp_int *a, mp_int *b); 00561 int s_mp_sqr(mp_int *a, mp_int *b); 00562 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); 00563 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); 00564 int mp_karatsuba_sqr(mp_int *a, mp_int *b); 00565 int mp_toom_sqr(mp_int *a, mp_int *b); 00566 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); 00567 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); 00568 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); 00569 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); 00570 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); 00571 void bn_reverse(unsigned char *s, int len); 00572 00573 extern const char *mp_s_rmap; 00574 00575 #ifdef __cplusplus 00576 } 00577 #endif 00578 00579 #endif 00580 00581 00582 /* $Source: /cvsroot/tcl/libtommath/tommath.h,v $ */ 00583 /* Based on Tom's version 1.8 */ 00584 /* $Revision: 1.4 $ */ 00585 /* $Date: 2006/12/01 00:31:32 $ */
Generated on Wed Mar 12 12:18:24 2008 by 1.5.1 |